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The aim of this paper is to provide an overview of all the basic aspects of the 
torsion of a manifold, with particular stress on the expressions in an anholo- 
nomic basis. After a brief review of anholonomie bases and Koszul covariant 
derivative, we show how the expressions for the torsion and the Riemann 
tensors in a general (anholonomie) basis arise from their expressions in a 
coordinate basis. We further derive the expression for the contortion tensor, 
which arises from the requirement that an affine connection with torsion be 
metric (preserving). The latter requirement is related to the equivalence princi- 
ple, whose mathematical aspects in a manifold with torsion are discussed next. 
Finally, we derive the expression for the distortion tensor, which is an analog of 
the curvature tensor but arising from the torsion rather than the metric tensor. 

I .  I N T R O D U C T I O N  

The  concep t  of  tors ion  of a d i f fe ren t iab le  m a n i f o l d  is no t  well  k n o w n  
or, a t  best ,  not  well  u n d e r s t o o d  b y  mos t  s tudents  of  relat ivi ty .  There  seem 
to be  two reasons  for  this s i tuat ion.  T h e  first  is h is tor ical :  ne i ther  d i f feren-  
t ial  geome t ry  in  its ear ly  d e v e l o p m e n t  (which grew ou t  of  s tudy ing  the 
hypersur faces  e m b e d d e d  in a n  Euc l i dean  space),  nor  genera l  re la t iv i ty  
theory  h a d  any  use for  tors ion.  A l t h o u g h  d i scovered  by  C a r t a n  in the  
1920s (Car tan ,  1922, 1923, 1924, 1925), to rs ion  has  never  been  s tud ied  
much  by  relat ivists  unt i l  r a the r  recen t ly  (see the review ar t ic le  b y  Heh l  et  
al., 1976). 

The  second  r eason  is tha t  tors ion,  a l though  c onc e p tua l l y  ra the r  s im- 
ple,  has  never  been  exp la ined  in  an  organized ,  lucid,  a n d  comple t e  fashion.  
The  mos t  that  e l emen ta ry  t ex tbooks  tell a b o u t  tors ion  is that  it  is the  
an t i symmet r i c  pa r t  of an  af f ine  connec t ion ,  whereas  a d v a n c e d  m o n o -  
graphs  on  d i f ferent ia l  g e o m e t r y  in t roduce  tors ion  ax iomat ica l ly ,  wi thou t  
giving the reader  a n y  he lp  to get  the feel ing for  it. Schouten ' s  (1954) book ,  
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on the other hand, provides too much information, so that it is difficult to 
extract the essentials and gain an overview; this is so particularly because 
the book does not use the modem (Koszul) approach to differential 
geometry. 

The purpose of this paper is to correct this omission, and explain the 
concept of torsion and related concepts in the style of Misner (1969), and 
thus hopefully to serve as a supplement to that work as well as to the book 
by Misner, Thorne, and Wheeler (1973). Both of these works which un- 
fortunately almost completely ignore the concept of  torsion. 

First, we recall the difference between a coordinate and an anholo- 
nomic basis, which is much more important for studying a manifold with 
torsion than when a manifold is endowed with metric only. 

A coordinate basis is a set of n linearly independent vectors, defined in 
each point of the manifold, which are tangent to the n coordinate lines, 
which pass through that point and belong to a coordinate system (also 
called the global coordinate system or natural coordinate system) imposed 
on the manifold. The transformation coefficients between two coordinate 
bases, belonging to two different coordinate systems 

eK, = hK'LeL, e L = h KLe/~, (1.1) 

are partial derivatives: 

~x L ~x x" 
= (1.2)  hK~ OX K, hK'L = aX L 

Such transformations are thus integrable or holonomic, and consequently 
other coordinate bases, obtained from the application of such transforma- 
tions on a coordinate basis, are also coordinate bases. 

If the transformation coefficients are not partial derivatives, then we 
get from a coordinate basis e L another basis e k (we will use upper case 
indices to denote a coordinate basis, and lower case indices to denote an 
anholonomic basis, which includes a coordinate basis as a special case), 
which is called anholonomic or nonintegrable because it has been obtained 
from a coordinate basis through a nonintegrable or anholonomic transfor- 
mation: 

e k = hkLeL,  e L--  hi'Leg (1.3) 

This basis is also called a noncoordinate basis or, in the French literature, 
rep~re mobile. Although it is always possible to find a coordinate basis 
which will coincide with an anholonomic basis in one point, that is, locally, 
there is no coordinate system which would correspond to the anholonomic 
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basis globally. Nevertheless, we can, in an anholonomic basis, still define 
objects which correspond to partial derivatives in a coordinate basis by 

(ekf) = f  /k = Okf= h* L Of = hkL(et.f ) (1.4) 
ax L 

These objects are sometimes referred to as Pfaffian derivatives (Zorawski, 
1967, p. 2). 

In general the basis vectors of an anholonomic basis do not commute. 
That is, their commutators (Lie brackets) (see Misner et al., 1973, p. 204, 
206, 235; Misner, 1969, p. 123) are not zero, but 

[ek,e,] =Cmktem (1.5) 

The quantities Cmkz are called commutation coefficients (Misner et al., 1973, 
p. 204, 206, 239); the name components of the object o f  anholonomity 
(Schouten, 1954, p. 100; Zorawski, 1967, p. 2; Golab, 1974, p. 140) is also 
used. We recall that a commutator of two vectors can be expressed in 
terms of their components (see Misner et al., 1973, p. 206, 236; Misner, 
1969, p. 123) as 

[ U, V ] = (U mv n/m -- V mu n/m)e n (1.6) 

Next we give a brief overview of the notion of covariant derivative in 
its modern, basis-independent, so-called Koszul form (Spivak, 1970, p. 6-1), 
which was introduced by Nomizu (1954, p. 35) on Koszul's advice. A 
covariant derivative or an affine connection is an operator V that assigns 
to each pair of vector fields X and Y, a third vector field VxY that satisfies 
the following axioms (Misner, 1969, p. 128; Misner et al., 1973, p. 252): 

Vyx, +gxY = f V x Y  + gVxY (linearity) 

Vx(Y1 + Y2) = VxY~ + VxY2 (additivity) 

Vx(fY) =fVxY + (Oxf)Y 

We will write briefly 

(chain rule for differentiation) 

(1.7a) 

(1.7b) 

(1.7c) 

for the covariant derivative along the basis vector e k. In a given basis, we 
can express the covariant derivative of a basis vector in terms of its 
components as 

Vke; = FJike j (1.9) 

V k ---- Ve, (1.8) 
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We must make a remark here about the notation used for the lower 
two indices of the components of a n  affine connection. We use the first 
index to denote the differentiated vector, and the second one to denote the 
differentiating vector. In the literature, the opposite choice seems to be 
more frequent (see, e.g., Hehl et al., 1976). We, however, adopted the 
above choice, which has also been used by Misner (1969), Misner et al. 
(1973), Einstein (1955, p. 143), Schroedinger (1950, p. 40), and others, for 
the following psychological reason. In component form, the covariant 
derivative of an arbitrary vector v is written as 

Vmv = v~:~ek = (vk/,. + vlr~t~)e ~ (1.10) 

With our notation, the index of the differentiating vector is the last one in 
both terms in the brackets. 

Of course, when torsionless (symmetric) connections are discussed, as 
is the case in most treatments on differential geometry and general 
relativity theory, the choice of notation does not matter as much as in our 
treatment, dealing explicitly with connections with torsion. 

2. t H E  CONCEPT OF T O R S I O N  

We now turn our attention to the concept of torsion. The most that 
elementary textbooks on differential geometry say about torsion is that it is 
the antisymmetric part of an affine connection. It is easy to show that such 
a quantity behaves as a tensor under the holonomic (integrable) transfor- 
mations of the coordinate basis, and one thus speaks about the torsion 
tensor. 

When one wants to extend the concept of torsion to an anholonomic 
basis, the above definition is no longer satisfactory. First, the symmetry 
properties of the affine connection components are not preserved under an 
anholonomic transformation of the basis. As an example we consider the 
components of the so-called Levi-Civita (Bishop and Goldberg, 1968, p. 
241; Spivak, 1970, pp .  6-17; Hayashi, 1976) connection, that is, the usual 
metric (preserving) torsionless connection of a Riemannian manifold, 
whose general form is [Misner et al., 1973, equation (13.23)] 

r k  Im =  2 ( gk l /m "b g k m / l  --  grin~k) + l ! ~(Cmkl-t-Clkm--Cklm)=[k, lmld-'Ymkl (2.1) 

The first term is usually called the Christoffel symbol, and the second the 
Ricci rotation coefficient (Levi-Civita, 1929, pp. 268-272 or Section X.3; 
Weatherburn, 1950, pp. 98-102 or Sections 54-57; Schouten 1954, p. 171; 
Gerretsen, 1962, pp. 119, 120 or Section 7.7.3; Golab, 1974; pp. 255-258 or 



Torsion and Related Concepts: An Introductory Overview 577 

Section 89). We observe that this connection is symmetric in the last two in- 
dices only in a coordinate basis, but loses its symmetry in an anholonomic 
basis. In the extreme case of  an orthonormal  anholonomic basis, it becomes 
antisymmetric in the first two indices (note that in an orthonormal basis, 
the partial derivatives of the metric tensor components are identically 
zero).  

Secondly, the antisymmetric part of an affine connection no longer 
transforms as a tensor, as we will now show. 

In a coordinate basis, we have 

T(e~o eL) -- T~KLeM = (r~'L,~- rMKL)eM = V/teL - -  VLeK (2.2) 

We now transform this expression into an anholonomic basis (lower 
case indices) 

Tm~,hk~chtLem=hkxVk(htLet)-htLV,(hkre~) (2.3) 

where the axiom (1.7a) was applied to the right-hand side. We then apply 
axioms (1.7b) and (1.7c) to get 

Tmkth I"xh tLe m = h kKh lL(V ke l -- ~T lek) + h kKh IL/ke I -- h ILh kK/le k (2.4) 

We also express the commutator  of the coordinate basis vectors 
let ,  eL], which is of course zero, in the anholonomic basis using (1.4), (1.6), 
and (1.7): 

O=[eK, eL]=hkK(h'Let)/k--h'L(hk~:ek)/, 

=h~'rh'L/ket-htLh~r/tek + hkxhtr[ek,et] (2.5) 

By inserting (2.5) into (2.4), we then get 

hkrhtL Tml, lem= h*KhtL(V.ket-- Vtek-- [ek, et] ) (2.6) 

If we now define torsion generally as 

T(e k, e,) = Tmktem = (Vke ' -- Vie k -- [e k, e,])  = (r% - rm , - c % ) e ~  (2.7) 

instead of (2.2), then the components Tmkl will always transform as 
components of a third-rank tensor, no matter what the basis or the 
transformation is. This is evidently due to the proper combination of the 
covariant derivative and the commutator  in such a way that all the terms 
that would spoil the tensor transformation properties cancel out. 
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We can use a similar approach to derive the expression (2.12) for the 
Riemann tensor. For the sake of completeness, we also give that deriva- 
tion. In a coordinate basis, we have 

R(e~c, eL)eu = R ~N xLeM = VKVLeN-- VZ VreN (2.8) 

which after the transformation to an anholonomic basis becomes 

R m,, kl h nNh kKh tLe,, ' 

= h k x ( h t L  Vk Vleiv + hlL/kVte lv) - -h lL(hkrVtVkelV + hkr/ lVke~v)  

= h ~xh tL(VkV t -  VtV k - Vlek,,,j)h"Ne n (2.9) 

The last equality is a consequence of the fact that 

Viex, eL]= hkxh tL /kV t  - htLhk~:/tV k + hkxhtLV[ek, e,l (2.10) 

also equals zero, which follows from (2.5) and (1.7a). An explicit calcula- 
tion shows that h"~, will be unaffected, when pulled through the combina- 
tion of the covariant differentiation operators in (2.9), so that (2.9) then 
becomes 

R m  t.n h k h I e _ t , k  t , l  t .n [ w  r7 
n k l  t '  N K L m - - "  K" L"  N~VkVl--VlVk--V[e~,,et]jen (2.11) 

Thus we have the definition of Riemann 

R(ek,et)e n = Rm, ktem = (VkV , - VtV k - V[ek,e,])e ~ (2.12) 

which is valid in any basis. 
The above two derivations can be found, in a more compact form, in 

Nomizu (1954, pp. 37, 38) and in Choquet-Bruhat (1968, pp. 237-240). 
Unfortunately, most of the modern books on differential geometry only 
introduce (2.7) and (2.12) axiomatically, leaving the reader without a 
feeling for the quantities involved, and wondering how they ever came 
about; most of them do not even bother to explain that the reason for both 
definitions is their tensor transformation properties. 

By comparing (1.5) and (2.7), one can immediately see the difference 
between the torsion and the commutator. Their components may indeed 
be equal (up to a sign) in a specially chosen, anholonomic basis (see 
below), when all the components of the affine connection are zero, but 
such an equality is just a coincidence. In a holonomic basis, the compo- 
nents of the commutator will always vanish; they depend on the choice of 
the basis. On the other hand, the components of torsion will, in general, 
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no t  vanish  in any  basis,  unless  the connec t ion  is torsionless.  Tors ion  is thus 
an  intr insic  p r o p e r t y  of  a mani fo ld ,  i n d e p e n d e n t  of  the choice  of the  basis.  

The  d i f ference  be tween  bo th  quant i t ies  is also obvious  f rom the 
p ic to r ia l  r epresen ta t ion  I shown in F igure  1. 

The  torsion vec tor  measures  the d i f ference  be tween  two para l le l  
t r anspo r t ed  basis  vectors  [xII(A ) and  yll(A)]; it  tells how much  an infini tesi-  
mal  pa ra l l e log ram fails to close. 2 

The  c o m m u t a t o r ,  however ,  is " the  closer  of  the curve"  (Misner  et al., 
1973, p. 236), curves be ing  the segments  of coo rd ina t e  lines; it  measures  
the  d i f ference  be tween  two basis  vectors  [x (E)  a n d  y(B)]  of the coord ina t e  
quadr i la te ra ls .  

3. T H E  C O N T O R T I O N  T E N S O R  

The  requ i rement  tha t  the  met r ic  tensor  be  covar ian t ly  cons tan t  or  
s t a t ionary  ( V g =  0) imposes  an  add i t i ona l  res t r ic t ion  on an  aff ine connec-  
t ion with torsion,  or  ra ther  on  its componen t s .  A connec t ion  sat isfying this 
r equ i r emen t  is ca l led  metric or  metric preserving; in m o d e m  b o o k s  on  
di f ferent ia l  geomet ry  the t e rm " c o n n e c t i o n  compa t ib l e  with met r i c"  is also 
used  (Bishop and  Go ldbe rg ,  1968, p. 238; Spivak,  1970, pp. 6-14, -15, -16). 
As  will be  shown below,  this r equ i remen t  fol lows f rom the  equiva lence  

IOn the basis of a similar picture Misner et al. (1973, p. 250) argued that the torsion of the 
space-time manifold must vanish because of the equivalence principle. Their argument is 
wrong, however, because the picture on the top of p. 250, which is critical for the incorrect 
conclusion, is constructed from the picture at the bottom of p. 249. This picture is true only 
if the torsion of the manifold is zero. We thus have a circulus vitiosus. In addition, they talk 
about geodesics without first defining the metric tensor and its being covariantly constant. 
The same observation has been made by J. M. Nester, University of Maryland (Hehl, 1977). 

2This may be the source of the word "torsion." A firm parallelogram (e.g., a wire frame) will 
break, if the surrounding material (e.g., plastieine) is subjected to a torsional deformation 
along an axis either parallel or perpendicular to the plane of the paraUelogram. 
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principle.  In  order  to f ind the expression for  the componen t s  of  this 
connect ion,  we could use the same me thod  as the one used to derive equa-  
t ion (2.1) for  the Levi-Civi ta  connect ion  (see Choque t -Bruha t ,  1968, p. 242; 
also Misner  et al., 1973, exercise 13.4). For  a connect ion with tors ion,  such 
a der ivat ion is given (in a coord ina te  basis only) for  example  in Schroed-  
inger (1950, pp. 65, 66), a l though  Misner (1969, p. 135) hints at it too .  

We  use a more  elegant app roach  instead. The  difference be tween  
Cartan ' s  3 connection (metr ic-preserving connec t ion  with torsion) and  the 
Levi-Civi ta  connect ion  is a tensor  

Ske t l ee t  = ( r  m ^ et _ Ik - -F  tk)eet--  Vge l -  Vkel  (3.1) 

Since the Levi-Civita connec t ion  is torsionless, we can write (2.7) as 

Tmk~ e m = (V k - V~)e / - (V t - Vl)ek = ( s k m l - -  S l mg)e m (3.2a) 

o r  

Tet kl  = S k  ml - -  S l  elk ( 3 . 2 b )  

So far, the tensor Set kl is comple te ly  arbi trary.  
We  consider now the expression 

Vet (e  k �9 el)  - V m (e/r el)  (3 .3)  

On the one hand,  it is identically zero because  the covar iant  derivat ive of  a 
scalar is equal  to its par t ia l  derivative,  no ma t t e r  wha t  the connect ion  is. 
On the other  hand,  the expression (3.3) is equal  to 

V m ( e k  ~ el) - Vet(e k. el) = e k �9 (Vet - V m ) e l  d- e t. ( V  m --  V e t ~ k  = am kl ~- am lk (3.4) 

because  the covar ian t  derivat ive of the dot ( .) ,  that  is, of the metric,  is zero 
(cf. Misner,  1969, p. 135; also Misner  et al., 1973, p. 314). Thus  the tensor  
Sen kl is an t i symmetr ic  in its last two indices, and  so has the same n u m b e r  
of componen t s  as the torsion tensor, that  is, n2(n - 1)/2,  and  can  be 
expressed in terms of the tors ion tensor  as 

1 
S m k l  = - ~ ( T m k l  q- T l k  m - -  T k l m )  (3.5) 

This tensor was n a m e d  the contort ion tensor by  Hehl  and  D a t t a  (1971). 

SSuch use of the term "Cartan connection" is frequent in physics papers dealing with torsion. 
The term is used also to mean a matrix of differential forms, giving the information about 
the parallel transport in Cartan's formulation of differential geometry in the language of 
differential forms (Spivak, 1970, pp. 7-32). 
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We see that the metric (preserving) connection is uniquely determined 
by the metric and the torsion fields on the manifold 

Fk l,~ = F~ tm+ Sm kl (3.6) 

where I'k tm is given by (2.1). This connection is also the most general 
affine, metric (preserving) connection. We will be using this connection in 
all the future work, also because it is the only connection compatible with 
the equivalence principle. 

We now give a geometrical interpretation of the contortion tensor. 
Parallel transferred basis vectors will differ from the original basis vectors 
in a point by 

de t = V metdx  "~ = Fktmek d x "  (3.7) 

For an orthonormal anholonomic base, this difference will be 

+ (3.8) 

Equation (3.8) expresses rotation of the parallel transferred orthonormal 
anholonomic basis with respect to the original orthonormal anholonomic 
basis. The first term expresses the (Ricci) rotation due to the Riemann 
structure (Riemannian metric) of the manifold, and the second term the 
rotation due to the torsional structure (cf. Hehl et al., 1976, p. 398). 

Because it expresses rotation on parallel transfer even in a flat 
manifold, the contortion tensor is of great physical importance. As has 
been demonstrated in other papers (Gogala, 1980a, 1980b), the contortion 
tensor can describe noninertial motions, in particular, uniformly accel- 
erated and uniformly rotating motions, as parallel transfer of the moving 
body's anholonomic basis (reference frame) along its world line; thus the 
contortion tensor is an excellent candidate for the geometrical interpreta- 
tion of the electromagnetic field. 

4. THE MATHEMATICAL ASPECTS OF THE PRINCIPLE OF 
EQUIVALENCE 

We now briefly examine the equivalence principle for a manifold 
endowed with torsion. This principle was first discussed by yon der Heyde 
(1975). We approach it here a little differently, and only from a merely 
geometrical standpoint. We take it in the following form: "The manifold 
must be locally Euclidean." 

We do not specify, however, whether the local basis is coordinate or 
anholonomic. As has been pointed out by vonder  Heyde, the restriction of 
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the equivalence principle to holonomic local bases introduces nonlocality, 
which contradicts the local character of the equivalence principle. The 
holonomity of the local basis implies that it corresponds to a global 
coordinate system. 

We thus assume that: (i) the manifold is locally Euclidean, and (ii) the 
local basis is anholonomic, in general. 

When we perform a transformation from the local anholonomic basis 
to a global coordinate basis, the components of the affine connection, 
which are zero in the local basis, because of (i), become 

FgZ.M = hkK(h tz.h "'MFk,,,, + h kL/M) = hklCh kL/M (4.1) 

Since the transformation is anholonomic, because of assumption (ii), the 
connection is not symmetric in the coordinate basis. It is, however, still 
metric (preserving); the covariant derivative V,,,gkt is namely a tensor, and 
if it is zero locally, because of (i), it must be zero in the global coordinate 
basis too. Thus the only connection which is compatible with the equiva- 
lence principle, is a metric (preserving) connection with torsion (3.6), that 
is, Cartan's connection. Because the components of the affine connection 
are zero in the local basis, it is evident from (2.7) that the components of 
the torsion tensor are equal, up to the sign, to the components of the object 
of anholonomity in that basis. We must be careful not to confuse the two; 
their equality is due to the fact that all the components of the affine 
connection are zero in the local basis. 

We also see from (4.1) that in the same way as the Riemannian metric 
arises from the transformation coefficients between the local Euclidean 
basis and the basis of the global coordinate system, via glcL=rlkthkxht L, 
the torsion arises from the derivatives of these coefficients, when one 
transforms from the local into a coordinate basis. We also observe that it is 
impossible to determine from purely local information about the compo- 
nents of the affine connection in an anholonomic basis how much of the 
antisymmetric part (in the first two indices) of the affine connection is a 
Ricci rotation coefficient, thus belonging to the Riemannian structure of 
the manifold, and how much is a component of the contortion tensor. This 
is, in a way, similar to the impossibility of telling, from a purely local 
information about the metric tensor, whether globally the metric is 
Euclidean or Riemannian. 

We now consider the reverse problem. It is well known that we can 
always find a special coordinate basis in which all the components of the 
Levi-Civita connection will be locally (in a point) equal to zero. One only 
needs to solve the transformation equations 

F"j,N, = h r r (  hj,LhN,Mrri.~ + hj,K/N,) = 0 (4.2) 
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for the unknowns hs,r /u , .  There are n2(n-I - I ) / 2  equations, and n 3 un- 
knowns, which are, however, restricted by n2(n - 1)/2 integrability condi- 
tions 

h j , r /N ,  - hN/C/j .  = 0 (4.3) 

reducing the number  of unknowns to n2(n - I -1 ) /2 .  Thus the number  of 
equations is equal to the number  of unknowns. 

At  first sight it seems that for the Cartan connection one cannot do 
the same thing, as there are now n 3 equations 

r~tm = h kx( h, Lh,,,M r'xL~ + h,K/,,, ) =0 (4.4) 

This is true, however, only when one insists on a holonomic local basis. If  
one allows an anholonomic local basis, then there are no restrictions such 
as (4.3), and consequently there are also n 3 unknowns, so that all the 
components  of the Cartan connection can be made to vanish locally, as 
was apparently first observed by von der Heyde (1975). 

5. T H E  D I S T O R T I O N  T E N S O R  

In a torsionless manifold, we have only one tensor quantity involving 
derivatives of the affine connection components.  This is the curvature 
(tensor), defined as (in this paragraph,  upper case letters denote vectors, 
and have nothing to do with coordinate basis) 

Q ( X , Y ) Z =  ~ r x V y Z - V y V x  Z -  ~[X,y]Z (5.1) 

In a manifold with torsion, the situation is more complex because the 
affine connection can now be split into the Levi-Civita connection and the 
contortion. Besides the curvature, we now have the Riemann (tensor), 
defined as 

R(x, v)z-- VxVyZ- VyVxZ- vt,~y~z (5.2) 

In addition, the difference of these two tensors is also a tensor: 

e ( x ,  v ) z  -- R(X, Y)Z - Q ( x ,  Y)Z (5.3) 

On a torsionless manifold, Riemann and curvature tensors coincide. On a 
flat manifold, on the other hand, curvature is zero, although in general, 
P(X, Y)Z = R(X,Y)Z is nonzero. We now cannot  talk about  curvature, as 
the manifold is flat. The sense of parallelism is, however, greatly distorted 
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on such a manifold. We therefore choose to call P(X,Y)Z the distortion 
(tensor). It is important to stress again that curvature is caused by the 
non-Euclidean metrical field on the manifold, whereas distortion is caused 
only by the presence of the torsional (or contortional) field on the 
manifold. It is true that the partial derivatives of the components of the 
metric tensor appear in (5.8), but that is only to guarantee the covariance 
of the expression. 

The expression of Riemann and curvature tensors in components are 
well known, e.g., 

R w xy = FW~y/~ - FW~x/y + FW,,~F'%y - FW,vF'%~ - PWzmCmxy (5.4) 

We now try to express the distortion tensor in component form, which we 
expect to be in terms of the contortion tensor components. F rom the 
definition (5.3), it follows that 

P(X,V)Z = (VxV~- ~x~y)z- (V~Vx- (Ty~x)Z- (Vtx,, 0 -  Vtx,~Z (5.5) 
The first term can be expressed as 

(VxVv- ~x~y)z = (Vx- Cx)(Vy- ~y)z+ ~x(V~- ~y)Z+ (Vx- ~x)~z 

W w W U ^ W  W ^ 
= S x ~Sy ~ew+(Sy x/x + Sy zF ~x)%+ Sx uI~yew (5.6) 

when axioms (1.7) and expression (3.1) are used. The second term can be 
expressed in a similar way. The third term becomes 

u ^ _ _  u w ~ ^ U  ^ U  w c ~(v . -v . )z -c  ~su ~%-(r ~x-r ~)su zew (5.7) 

as Levi-Civita connection is torsionless. 
When we insert the above expressions into (5.5), we get 

ewz ~y = w . P ( X , Y ) Z - -  (Sy w~;x - Sx w,;y) + (SywUsx ~ - SyzUSx ~ )  (5.8) 

Here, " ;"  is the covariant derivative with the Levi-Civita connection. 
Up to this point, no assumption yet has been made about the 

connection being metric, so the result (5.8) is quite general; it is valid as 
long as the connection ~r is torsionless. If we now enforce the condition 
(3.4), that is, that the contortion tensor is antisymmetric in the last two 
indices, we find that Pwz xy, and consequently, R~  ~y are antisymmetric in 
the first two indices besides being antisymmetric in the last two indices. 
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The latter antisymmetry follows from their definitions, whereas the former 
one is common to all Riemann tensors with a metric connection, as can be 
shown quite generally (Misner, 1969, p. 136; Misner et al., 1973, exercise 
13.8). 4 

From the expression for the distortion tensor (5.8), we see, that in 
some special cases all its components may be identically zero, despite the 
manifold being endowed with nonzero torsion, which does not need to be 
constant either. This distinguishes the distortion tensor from the curvature 
tensor, whose components are all zero only if the metric is Euclidean. 
In many other ways the curvature and the distortion tensors are, however, 
analogous to each other, although they arise from different geometrical 
structures on the manifold. That  has physical implications also (see Gogala 
1980a, 1980b). 

It must be stressed, however, that neither the components of the 
Riemann nor the distortion tensor are symmetric under the interchange of 
the first and second pair of indices unlike the components of the curvature 
tensor. Consequently, they have [n(n - 1)//2] 2 components each. Neither do 
Ricci nor Bianchi identities in their usual form apply any more. Instead, 
they are generalized to read 

Ra[b cd] = ea[b cd] = Za[bc;d] "Jr" Z[b cmad]am 

R a btcd; e] = Pab[cd; e] = R ~[~dS~lb~ - R ~bt~d* Selan 

(5.9) 

(5.10) 

where [ . - -  ] denotes circular permutation of the indices. 
As already mentioned, the sense of parallelism is greatly distorted in a 

manifold with torsion. We are intuitively used to extremals (geodesics) in a 
plane being also the straightest lines (autoparallels). This is no longer the 
case when a manifold is endowed with torsion. The straightest lines can 
now be spirals or some other curves, and appear "bent" to our intuition. 
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